3.1.33 \(\int \frac {A+B x+C x^2}{(a+b x^2+c x^4)^2} \, dx\) [33]

3.1.33.1 Optimal result
3.1.33.2 Mathematica [A] (verified)
3.1.33.3 Rubi [A] (verified)
3.1.33.4 Maple [C] (verified)
3.1.33.5 Fricas [F(-1)]
3.1.33.6 Sympy [F(-1)]
3.1.33.7 Maxima [F]
3.1.33.8 Giac [B] (verification not implemented)
3.1.33.9 Mupad [B] (verification not implemented)

3.1.33.1 Optimal result

Integrand size = 25, antiderivative size = 368 \[ \int \frac {A+B x+C x^2}{\left (a+b x^2+c x^4\right )^2} \, dx=-\frac {B \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {x \left (A b^2-2 a A c-a b C+c (A b-2 a C) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {c} \left (A b-2 a C+\frac {A \left (b^2-12 a c\right )+4 a b C}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \left (A b-2 a C-\frac {A b^2-12 a A c+4 a b C}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {2 B c \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}} \]

output
-1/2*B*(2*c*x^2+b)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)+1/2*x*(A*b^2-2*a*A*c-a*b*C 
+c*(A*b-2*C*a)*x^2)/a/(-4*a*c+b^2)/(c*x^4+b*x^2+a)+2*B*c*arctanh((2*c*x^2+ 
b)/(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(3/2)+1/4*arctan(x*2^(1/2)*c^(1/2)/(b- 
(-4*a*c+b^2)^(1/2))^(1/2))*c^(1/2)*(A*b-2*C*a+(A*(-12*a*c+b^2)+4*a*b*C)/(- 
4*a*c+b^2)^(1/2))/a/(-4*a*c+b^2)*2^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)+1/4* 
arctan(x*2^(1/2)*c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*c^(1/2)*(A*b-2*C*a+ 
(12*A*a*c-A*b^2-4*C*a*b)/(-4*a*c+b^2)^(1/2))/a/(-4*a*c+b^2)*2^(1/2)/(b+(-4 
*a*c+b^2)^(1/2))^(1/2)
 
3.1.33.2 Mathematica [A] (verified)

Time = 0.75 (sec) , antiderivative size = 393, normalized size of antiderivative = 1.07 \[ \int \frac {A+B x+C x^2}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {1}{4} \left (\frac {2 a b (B+C x)-2 A b x \left (b+c x^2\right )+4 a c x (A+x (B+C x))}{a \left (-b^2+4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {2} \sqrt {c} \left (A \left (b^2-12 a c+b \sqrt {b^2-4 a c}\right )-2 a \left (-2 b+\sqrt {b^2-4 a c}\right ) C\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{a \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {2} \sqrt {c} \left (A \left (b^2-12 a c-b \sqrt {b^2-4 a c}\right )+2 a \left (2 b+\sqrt {b^2-4 a c}\right ) C\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{a \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {4 B c \log \left (-b+\sqrt {b^2-4 a c}-2 c x^2\right )}{\left (b^2-4 a c\right )^{3/2}}+\frac {4 B c \log \left (b+\sqrt {b^2-4 a c}+2 c x^2\right )}{\left (b^2-4 a c\right )^{3/2}}\right ) \]

input
Integrate[(A + B*x + C*x^2)/(a + b*x^2 + c*x^4)^2,x]
 
output
((2*a*b*(B + C*x) - 2*A*b*x*(b + c*x^2) + 4*a*c*x*(A + x*(B + C*x)))/(a*(- 
b^2 + 4*a*c)*(a + b*x^2 + c*x^4)) + (Sqrt[2]*Sqrt[c]*(A*(b^2 - 12*a*c + b* 
Sqrt[b^2 - 4*a*c]) - 2*a*(-2*b + Sqrt[b^2 - 4*a*c])*C)*ArcTan[(Sqrt[2]*Sqr 
t[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(a*(b^2 - 4*a*c)^(3/2)*Sqrt[b - Sqrt 
[b^2 - 4*a*c]]) - (Sqrt[2]*Sqrt[c]*(A*(b^2 - 12*a*c - b*Sqrt[b^2 - 4*a*c]) 
 + 2*a*(2*b + Sqrt[b^2 - 4*a*c])*C)*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sq 
rt[b^2 - 4*a*c]]])/(a*(b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]) - ( 
4*B*c*Log[-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2])/(b^2 - 4*a*c)^(3/2) + (4*B*c* 
Log[b + Sqrt[b^2 - 4*a*c] + 2*c*x^2])/(b^2 - 4*a*c)^(3/2))/4
 
3.1.33.3 Rubi [A] (verified)

Time = 0.70 (sec) , antiderivative size = 356, normalized size of antiderivative = 0.97, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {2202, 27, 1432, 1086, 1083, 219, 1492, 25, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B x+C x^2}{\left (a+b x^2+c x^4\right )^2} \, dx\)

\(\Big \downarrow \) 2202

\(\displaystyle \int \frac {C x^2+A}{\left (c x^4+b x^2+a\right )^2}dx+\int \frac {B x}{\left (c x^4+b x^2+a\right )^2}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {C x^2+A}{\left (c x^4+b x^2+a\right )^2}dx+B \int \frac {x}{\left (c x^4+b x^2+a\right )^2}dx\)

\(\Big \downarrow \) 1432

\(\displaystyle \int \frac {C x^2+A}{\left (c x^4+b x^2+a\right )^2}dx+\frac {1}{2} B \int \frac {1}{\left (c x^4+b x^2+a\right )^2}dx^2\)

\(\Big \downarrow \) 1086

\(\displaystyle \int \frac {C x^2+A}{\left (c x^4+b x^2+a\right )^2}dx+\frac {1}{2} B \left (-\frac {2 c \int \frac {1}{c x^4+b x^2+a}dx^2}{b^2-4 a c}-\frac {b+2 c x^2}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 1083

\(\displaystyle \int \frac {C x^2+A}{\left (c x^4+b x^2+a\right )^2}dx+\frac {1}{2} B \left (\frac {4 c \int \frac {1}{-x^4+b^2-4 a c}d\left (2 c x^2+b\right )}{b^2-4 a c}-\frac {b+2 c x^2}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \int \frac {C x^2+A}{\left (c x^4+b x^2+a\right )^2}dx+\frac {1}{2} B \left (\frac {4 c \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}-\frac {b+2 c x^2}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 1492

\(\displaystyle -\frac {\int -\frac {A b^2+a C b+c (A b-2 a C) x^2-6 a A c}{c x^4+b x^2+a}dx}{2 a \left (b^2-4 a c\right )}+\frac {x \left (c x^2 (A b-2 a C)-2 a A c-a b C+A b^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {1}{2} B \left (\frac {4 c \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}-\frac {b+2 c x^2}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {c (A b-2 a C) x^2+A \left (b^2-6 a c\right )+a b C}{c x^4+b x^2+a}dx}{2 a \left (b^2-4 a c\right )}+\frac {x \left (c x^2 (A b-2 a C)-2 a A c-a b C+A b^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {1}{2} B \left (\frac {4 c \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}-\frac {b+2 c x^2}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {\frac {1}{2} c \left (\frac {A \left (b^2-12 a c\right )+4 a b C}{\sqrt {b^2-4 a c}}-2 a C+A b\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}dx+\frac {1}{2} c \left (-\frac {-12 a A c+4 a b C+A b^2}{\sqrt {b^2-4 a c}}-2 a C+A b\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}dx}{2 a \left (b^2-4 a c\right )}+\frac {x \left (c x^2 (A b-2 a C)-2 a A c-a b C+A b^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {1}{2} B \left (\frac {4 c \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}-\frac {b+2 c x^2}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\sqrt {c} \left (\frac {A \left (b^2-12 a c\right )+4 a b C}{\sqrt {b^2-4 a c}}-2 a C+A b\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \left (-\frac {-12 a A c+4 a b C+A b^2}{\sqrt {b^2-4 a c}}-2 a C+A b\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} \sqrt {\sqrt {b^2-4 a c}+b}}}{2 a \left (b^2-4 a c\right )}+\frac {x \left (c x^2 (A b-2 a C)-2 a A c-a b C+A b^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {1}{2} B \left (\frac {4 c \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}-\frac {b+2 c x^2}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

input
Int[(A + B*x + C*x^2)/(a + b*x^2 + c*x^4)^2,x]
 
output
(x*(A*b^2 - 2*a*A*c - a*b*C + c*(A*b - 2*a*C)*x^2))/(2*a*(b^2 - 4*a*c)*(a 
+ b*x^2 + c*x^4)) + ((Sqrt[c]*(A*b - 2*a*C + (A*(b^2 - 12*a*c) + 4*a*b*C)/ 
Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]] 
)/(Sqrt[2]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[c]*(A*b - 2*a*C - (A*b^2 - 
 12*a*A*c + 4*a*b*C)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b 
+ Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(2*a*(b^2 - 
4*a*c)) + (B*(-((b + 2*c*x^2)/((b^2 - 4*a*c)*(a + b*x^2 + c*x^4))) + (4*c* 
ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(b^2 - 4*a*c)^(3/2)))/2
 

3.1.33.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1086
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x) 
*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c))), x] - Simp[2*c*((2*p + 
 3)/((p + 1)*(b^2 - 4*a*c)))   Int[(a + b*x + c*x^2)^(p + 1), x], x] /; Fre 
eQ[{a, b, c}, x] && ILtQ[p, -1]
 

rule 1432
Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[1/2 
 Subst[Int[(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 1492
Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symb 
ol] :> Simp[x*(a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2)*((a + b*x^2 + 
 c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 
 - 4*a*c))   Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 
7)*(d*b - 2*a*e)*c*x^2, x]*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, 
 b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && 
 LtQ[p, -1] && IntegerQ[2*p]
 

rule 2202
Int[(Pn_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{n 
 = Expon[Pn, x], k}, Int[Sum[Coeff[Pn, x, 2*k]*x^(2*k), {k, 0, n/2}]*(a + b 
*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pn, x, 2*k + 1]*x^(2*k), {k, 0, (n - 
1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pn, x] 
 &&  !PolyQ[Pn, x^2]
 
3.1.33.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.25 (sec) , antiderivative size = 232, normalized size of antiderivative = 0.63

method result size
risch \(\frac {-\frac {c \left (A b -2 C a \right ) x^{3}}{2 a \left (4 a c -b^{2}\right )}+\frac {c \,x^{2} B}{4 a c -b^{2}}+\frac {\left (2 A a c -A \,b^{2}+a b C \right ) x}{2 a \left (4 a c -b^{2}\right )}+\frac {B b}{8 a c -2 b^{2}}}{c \,x^{4}+b \,x^{2}+a}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (-\frac {c \left (A b -2 C a \right ) \textit {\_R}^{2}}{a \left (4 a c -b^{2}\right )}+\frac {4 \textit {\_R} B c}{4 a c -b^{2}}+\frac {6 A a c -A \,b^{2}-a b C}{a \left (4 a c -b^{2}\right )}\right ) \ln \left (x -\textit {\_R} \right )}{2 c \,\textit {\_R}^{3}+\textit {\_R} b}\right )}{4}\) \(232\)
default \(16 c^{2} \left (-\frac {\frac {-\frac {\left (-4 A \sqrt {-4 a c +b^{2}}\, a c +A \sqrt {-4 a c +b^{2}}\, b^{2}-4 A a b c +A \,b^{3}+8 a^{2} c C -2 C a \,b^{2}\right ) x}{16 a c}-\frac {B \left (4 a c -b^{2}\right )}{8 c}}{x^{2}+\frac {b}{2 c}-\frac {\sqrt {-4 a c +b^{2}}}{2 c}}+\frac {2 B a \sqrt {-4 a c +b^{2}}\, \ln \left (-2 c \,x^{2}+\sqrt {-4 a c +b^{2}}-b \right )+\frac {\left (-12 A \sqrt {-4 a c +b^{2}}\, a c +A \sqrt {-4 a c +b^{2}}\, b^{2}-4 A a b c +A \,b^{3}+4 C \sqrt {-4 a c +b^{2}}\, a b +8 a^{2} c C -2 C a \,b^{2}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}}{8 a}}{4 c \left (4 a c -b^{2}\right )^{2}}+\frac {\frac {\frac {\left (4 A \sqrt {-4 a c +b^{2}}\, a c -A \sqrt {-4 a c +b^{2}}\, b^{2}-4 A a b c +A \,b^{3}+8 a^{2} c C -2 C a \,b^{2}\right ) x}{16 a c}+\frac {B \left (4 a c -b^{2}\right )}{8 c}}{x^{2}+\frac {\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b}{2 c}}+\frac {2 B a \sqrt {-4 a c +b^{2}}\, \ln \left (2 c \,x^{2}+\sqrt {-4 a c +b^{2}}+b \right )+\frac {\left (12 A \sqrt {-4 a c +b^{2}}\, a c -A \sqrt {-4 a c +b^{2}}\, b^{2}-4 A a b c +A \,b^{3}-4 C \sqrt {-4 a c +b^{2}}\, a b +8 a^{2} c C -2 C a \,b^{2}\right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}}{8 a}}{4 c \left (4 a c -b^{2}\right )^{2}}\right )\) \(579\)

input
int((C*x^2+B*x+A)/(c*x^4+b*x^2+a)^2,x,method=_RETURNVERBOSE)
 
output
(-1/2*c*(A*b-2*C*a)/a/(4*a*c-b^2)*x^3+c/(4*a*c-b^2)*x^2*B+1/2*(2*A*a*c-A*b 
^2+C*a*b)/a/(4*a*c-b^2)*x+1/2/(4*a*c-b^2)*b*B)/(c*x^4+b*x^2+a)+1/4*sum((-c 
*(A*b-2*C*a)/a/(4*a*c-b^2)*_R^2+4/(4*a*c-b^2)*_R*B*c+(6*A*a*c-A*b^2-C*a*b) 
/a/(4*a*c-b^2))/(2*_R^3*c+_R*b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2*b+a))
 
3.1.33.5 Fricas [F(-1)]

Timed out. \[ \int \frac {A+B x+C x^2}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Timed out} \]

input
integrate((C*x^2+B*x+A)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")
 
output
Timed out
 
3.1.33.6 Sympy [F(-1)]

Timed out. \[ \int \frac {A+B x+C x^2}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Timed out} \]

input
integrate((C*x**2+B*x+A)/(c*x**4+b*x**2+a)**2,x)
 
output
Timed out
 
3.1.33.7 Maxima [F]

\[ \int \frac {A+B x+C x^2}{\left (a+b x^2+c x^4\right )^2} \, dx=\int { \frac {C x^{2} + B x + A}{{\left (c x^{4} + b x^{2} + a\right )}^{2}} \,d x } \]

input
integrate((C*x^2+B*x+A)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")
 
output
-1/2*(2*B*a*c*x^2 + (2*C*a - A*b)*c*x^3 + B*a*b + (C*a*b - A*b^2 + 2*A*a*c 
)*x)/((a*b^2*c - 4*a^2*c^2)*x^4 + a^2*b^2 - 4*a^3*c + (a*b^3 - 4*a^2*b*c)* 
x^2) + 1/2*integrate(-(4*B*a*c*x + (2*C*a - A*b)*c*x^2 - C*a*b - A*b^2 + 6 
*A*a*c)/(c*x^4 + b*x^2 + a), x)/(a*b^2 - 4*a^2*c)
 
3.1.33.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5156 vs. \(2 (323) = 646\).

Time = 1.59 (sec) , antiderivative size = 5156, normalized size of antiderivative = 14.01 \[ \int \frac {A+B x+C x^2}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

input
integrate((C*x^2+B*x+A)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")
 
output
-1/2*(2*C*a*c*x^3 - A*b*c*x^3 + 2*B*a*c*x^2 + C*a*b*x - A*b^2*x + 2*A*a*c* 
x + B*a*b)/((c*x^4 + b*x^2 + a)*(a*b^2 - 4*a^2*c)) + 1/16*((2*b^3*c^2 - 8* 
a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3 + 
4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c + 2*sqrt 
(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c - sqrt(2)*sqrt 
(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b*c^2 - 2*(b^2 - 4*a*c)*b*c^ 
2)*(a*b^2 - 4*a^2*c)^2*A - 2*(2*a*b^2*c^2 - 8*a^2*c^3 - sqrt(2)*sqrt(b^2 - 
 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c 
)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt 
(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + s 
qrt(b^2 - 4*a*c)*c)*a*c^2 - 2*(b^2 - 4*a*c)*a*c^2)*(a*b^2 - 4*a^2*c)^2*C + 
 2*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^6 - 14*sqrt(2)*sqrt(b*c + 
sqrt(b^2 - 4*a*c)*c)*a^2*b^4*c - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c) 
*a*b^5*c - 2*a*b^6*c + 64*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^2* 
c^2 + 20*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^3*c^2 + sqrt(2)*sqr 
t(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 + 28*a^2*b^4*c^2 - 96*sqrt(2)*sqrt( 
b*c + sqrt(b^2 - 4*a*c)*c)*a^4*c^3 - 48*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a* 
c)*c)*a^3*b*c^3 - 10*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3 - 
 128*a^3*b^2*c^3 + 24*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*c^4 + 19 
2*a^4*c^4 + 2*(b^2 - 4*a*c)*a*b^4*c - 20*(b^2 - 4*a*c)*a^2*b^2*c^2 + 48...
 
3.1.33.9 Mupad [B] (verification not implemented)

Time = 8.40 (sec) , antiderivative size = 4707, normalized size of antiderivative = 12.79 \[ \int \frac {A+B x+C x^2}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

input
int((A + B*x + C*x^2)/(a + b*x^2 + c*x^4)^2,x)
 
output
((B*b)/(2*(4*a*c - b^2)) + (x*(2*A*a*c - A*b^2 + C*a*b))/(2*a*(4*a*c - b^2 
)) + (B*c*x^2)/(4*a*c - b^2) - (c*x^3*(A*b - 2*C*a))/(2*a*(4*a*c - b^2)))/ 
(a + b*x^2 + c*x^4) + symsum(log((5*A^3*b^3*c^4 + 8*C^3*a^3*c^4 + 6*C^3*a^ 
2*b^2*c^3 - 36*A^3*a*b*c^5 - 96*A*B^2*a^2*c^5 + 72*A^2*C*a^2*c^5 - 3*A^2*C 
*b^4*c^3 + 16*A*B^2*a*b^2*c^4 + 3*A*C^2*a*b^3*c^3 - 60*A*C^2*a^2*b*c^4 + 1 
8*A^2*C*a*b^2*c^4 + 16*B^2*C*a^2*b*c^4)/(8*(a^2*b^6 - 64*a^5*c^3 - 12*a^3* 
b^4*c + 48*a^4*b^2*c^2)) - root(1572864*a^8*b^2*c^5*z^4 - 983040*a^7*b^4*c 
^4*z^4 + 327680*a^6*b^6*c^3*z^4 - 61440*a^5*b^8*c^2*z^4 + 6144*a^4*b^10*c* 
z^4 - 1048576*a^9*c^6*z^4 - 256*a^3*b^12*z^4 + 576*A*C*a^2*b^8*c*z^2 + 245 
76*A*C*a^5*b^2*c^4*z^2 - 3072*A*C*a^3*b^6*c^2*z^2 + 2048*A*C*a^4*b^4*c^3*z 
^2 - 32*A*C*a*b^10*z^2 + 12288*C^2*a^6*b*c^4*z^2 + 61440*A^2*a^5*b*c^5*z^2 
 + 432*A^2*a*b^9*c*z^2 - 49152*A*C*a^6*c^5*z^2 - 8192*C^2*a^5*b^3*c^3*z^2 
+ 1536*C^2*a^4*b^5*c^2*z^2 + 24576*B^2*a^5*b^2*c^4*z^2 - 6144*B^2*a^4*b^4* 
c^3*z^2 + 512*B^2*a^3*b^6*c^2*z^2 - 61440*A^2*a^4*b^3*c^4*z^2 + 24064*A^2* 
a^3*b^5*c^3*z^2 - 4608*A^2*a^2*b^7*c^2*z^2 - 32768*B^2*a^6*c^5*z^2 - 16*C^ 
2*a^2*b^9*z^2 - 16*A^2*b^11*z^2 + 3072*A*B*C*a^3*b^3*c^3*z - 768*A*B*C*a^2 
*b^5*c^2*z - 4096*A*B*C*a^4*b*c^4*z + 64*A*B*C*a*b^7*c*z + 32*B*C^2*a^2*b^ 
6*c*z - 672*A^2*B*a*b^6*c^2*z + 1536*B*C^2*a^4*b^2*c^3*z - 384*B*C^2*a^3*b 
^4*c^2*z - 15872*A^2*B*a^3*b^2*c^4*z + 4992*A^2*B*a^2*b^4*c^3*z + 32*A^2*B 
*b^8*c*z - 2048*B*C^2*a^5*c^4*z + 18432*A^2*B*a^4*c^5*z + 192*A*B^2*C*a...